Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks

نویسندگان

  • Ion Necoara
  • Yurii Nesterov
  • François Glineur
چکیده

In this paper we develop random block coordinate descent methods for minimizing large-scale linearly constrained convex problems over networks. Since coupled constraints appear in the problem, we devise an algorithm that updates in parallel at each iteration at least two random components of the solution, chosen according to a given probability distribution. Those computations can be performed in a distributed fashion according to the structure of the network. Complexity per iteration of the proposed methods is usually cheaper than that of the full gradient method when the number of nodes in the network is much larger than the number of updated components. On smooth convex problems, we prove that these methods exhibit a sublinear worst-case convergence rate in the expected value of the objective function. Moreover this convergence rate depends linearly on the number of components to be updated. On smooth strongly convex problems we prove that our methods converge linearly. We also focus on how to choose the probabilities to make our randomized algorithms converge as fast as possible, which leads us to solving a sparse semidefinite program. We then describe several applications that fit in our framework, in particular the convex feasibility problem. Finally, numerical experiments illustrate the behaviour of our methods, showing in particular that updating more than two components in parallel accelerates the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale randomized-coordinate descent methods with non-separable linear constraints

We develop randomized block coordinate descent (CD) methods for linearly constrained convex optimization. Unlike other large-scale CD methods, we do not assume the constraints to be separable, but allow them be coupled linearly. To our knowledge, ours is the first CD method that allows linear coupling constraints, without making the global iteration complexity have an exponential dependence on ...

متن کامل

A Random Coordinate Descent Algorithm for Singly Linear Constrained Smooth Optimization∗

In this paper we develop a novel randomized block-coordinate descent method for minimizing multi-agent convex optimization problems with singly linear coupled constraints over networks and prove that it obtains in expectation an ε accurate solution in at most O( 1 λ2(Q)ε ) iterations, where λ2(Q) is the second smallest eigenvalue of a matrix Q that is defined in terms of the probabilities and t...

متن کامل

A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints

In this paper we propose a variant of the random coordinate descent method for solving linearly constrained convex optimization problems with composite objective functions. If the smooth part of the objective function has Lipschitz continuous gradient, then we prove that our method obtains an ε-optimal solution in O(N/ε) iterations, where N is the number of blocks. For the class of problems wit...

متن کامل

A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training

Support vector machines (SVMs) training may be posed as a large quadratic program (QP) with bound constraints and a single linear equality constraint. We propose a (block) coordinate gradient descent method for solving this problem and, more generally, linearly constrained smooth optimization. Our method is closely related to decomposition methods currently popular for SVM training. We establis...

متن کامل

A Random Coordinate Descent Method on Large-scale Optimization Problems with Linear Constraints

In this paper we develop a random block coordinate descent method for minimizing large-scale convex problems with linearly coupled constraints and prove that it obtains in expectation an ε-accurate solution in at most O( 1 ε ) iterations. However, the numerical complexity per iteration of the new method is usually much cheaper than that of methods based on full gradient information. We focus on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 173  شماره 

صفحات  -

تاریخ انتشار 2017